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Superposition properties of relaxation or 
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The time-temperature superposition principle is widely used to construct a master curve from 
individual curves of mechanical or electrical properties, measured as a function of time or fre- 
quency and at different temperatures. This principle, however, is not applied, in general, to the 
distribution functions of retardation or relaxation times that characterize the micromechanisms 
associated to a polymeric system. 

A detailed treatment of the superposition properties of the spectra is considered and some 
typical distribution functions, presented in the literature, are analysed to show the conditions 
that must be fulfilled according to the time-temperature superposition principle. 

1. In troduct ion  
The behaviour of a viscoelastic material is usually 
described in terms of the micromechanisms that 
govern the different molecular processes. These micro- 
mechanisms are characterized by their relaxation 
times and by the distribution functions, usually called 
spectra, that give the probability of having a molecu- 
lar response associated to each characteristic time, r. 
Moreover, for certain kinds of polymers (dilute sol- 
utions, linear polymers with narrow molecular weight 
distribution, undilutes amorphous polymers, etc.) the 
micromechanisms are represented by physical models, 
as the ones given by Rouse [1], FerrY et al. [2], Zimm 
[3], Osaki [4], Chompff and Duiser [5], Edwards [6], 
Ziabicki [7], among others. The behaviour of poly- 
mers cannot be generally explained, however, in terms 
of known physical models, so that, the time or fre- 
quency dependence of the mechanical properties 
(stress relaxation, creep and dynamic tests) is a helpful 
tool for the characterization of the micromechanisms 
controlling the viscoelastic properties. The exper- 
imental methods, however, can normally cover only 
three or four decades of time or frequency, while 
ten to fifteen decades are needed to reflect the variety 
of molecular motions in polymeric systems. In fact, 
the spectra provide useful information about the 
polymer properties only if the viscoelastic functions 
are measured over many decades. 

A very useful tool in this respect is the time-tem- 
perature superposition principle (TTSP) which pro- 
vides a much larger effective range of time or fre- 
quency by making measurements of the viscoelastic 
functions at different temperatures. According to this 
principle, a given property measured for short times 
must be identical with one measured for longer times 
at lower temperature, except that the curves are shifted 
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parallel to the horizontal axis, matching to a master 
curve. Then, from the master curve it is possible to 
obtain the distribution function of all the character- 
istic times involved in the relaxation process. 

On the other hand, if single curves are measured 
over a great period of  time at each temperature, then, 
the respective individual distribution functions can be 
calculated. This procedure has been used by Sommer 
[8] for data obtained in polyvinyl chloride (PVC), 
where experimental curves extending over near nine 
decades in time or frequency Were obtained, at each 
temperature. Furthermore, the author has constructed 
master relaxation or retardation spectra by applying 
the time-temperature superposition to the spectra 
obtained at each temperature. No demonstration of 
the validity of this procedure was given. 

It is the purpose of this paper to show that if the 
individual spectra verify the TTSP then, the individual 
distribution functions also have a translation parallel 
to the abscissa such that the matching of the segments 
leads to a master curve. Finally, some typical distribu- 
tion functions are analysed to determine the tempera- 
ture dependence of the parameters according to the 
Scaling conditions imposed by the TTSP. 

2. Theory  
2.1. Theoretical background 
When a transient or dynamic test is performed, the 
modulus or compliance, F, can be measured as a func- 
tion of the time, t, or the frequency, v = co/2~, for 
different temperatures. Hence, F is a function that can 
be written as 

F = F(x ,  z) (1) 

on defining the variables x = in t (or x = - In co) for 
transient (or dynamic) measurements and using the 
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variable z for the temperature. Any modulus (or com- 
pliance) c a n b e  expressed as [9, (Ch. 3)] 

= C + f ~  D(u, z) g(x, u) du (2) F(x, Z) 

where D(u, z) is the relaxation (or retardation) spec- 
trum, g(x, u) is the time (or frequency) dependence of 
a Maxwell (or Voigt) element, C is the equilibrium 
modulus, G~, (or the glassy compliance Jg) and the 
characteristic time, 27, is expressed in terms of the 
variable u = In 27. For  example, if F is the storage 
compliance, J '  (t, T), Equation 2 can be written as 
[9, (Ch. 3)]. 

1 d(ln 27) J'  (t, T)  = Jg+ f]oo L (27' T)  
1 ( .02272 + 

(3) 

where 

C = Jg (4) 

D(u, z) = L (ln 27, T) (5) 

g(x, u) = 1/[1 + e -2(x ")] (6) 

It is clear from Equation 6 that the function g depends 
not on two independent variables x and u but on a 
single argument (x - u). The same result is obtained 
for the other mechanical properties. Then, Equation 2 
can be written as 

C + ;~ D(u,z) g ( x -  u) du (7) F(x, Z) 

Now, if the property F is measured as a function 
of x for two values of the parameter z, that is, z 
and z + Az, according to the TTSP the following 
equation must be fulfilled for all the values of x [10] 

F(x  + Ax, z + Az) = F ( x , z )  (8) 

where the horizontal shift Ax depends only on Az. 
Furthermore, it has been demonstrated that if a set of  
curves y(x, z) satisfies the scaling conditions then, the 
most general function with translation parallel to the 
abscissa is given by [11] 

G(y, x - ~.h(z)) = 0 (9) 

where G is an implicit function, h(z) is an arbitrary 
function that depends only on z and ~ is the slope of 
the translation path in the (h(z), x) plane, that is, 

= 6 x / 6 h ( z )  (1o) 

Moreover, on considering that the increments in x and 
z, given in Equation 6, are related by the Williams- 
Landel-Ferry (WLF) equation [12], then [13, 14] 

h(z) = p + q ~  (11) 
r -b z 

where p, q and r are constants. 

2.2. Analysis of the superposition of the 
spectra 

If it is assumed that the distribution function O(u, z) 
satisfies the TTSP then, the spectrum evaluated at u 
for a certain temperature z should be the same as the 
one corresponding to z + Az if it is evaluated at 

u + Au, i.e., 

D(u,z )  = D(u + Au, z + Az) (12) 

where Au depends only on Az. Now using Equations 
7 and 12, any mechanical property can be written as 

F(x, z) = C +  f~ D(u + Au, z + Az) g ( x -  u) du 

(13) 

which, on making the change of variable 

u' = u + Au (14) 

can be transformed to 

co z 
F(x,z)  = C + f_ D ( u , z  + Az)g(x + Au - u')du' 

(15) 

The second member of  Equation 15 is the function F 
evaluated at x + Au for the temperature z + Az, so 
that 

F ( x , z )  = F(x + Au, z + Az) (16) 

As this last expression is valid for all values o f x  it has 
been demonstrated that the function F also satisfies 
the TTSP. Furthermore, the translation path is the 
same for both the distribution function D(u, z) and the 
mechanical property F(x, z), though they correspond 
to translations of two different variables: the charac- 
teristic time 27 = e" and the time t = e x, respectively. 

From another point of view, if it is considered that 
the curves F against x, parametrized by the variable z, 
satisfy the TTSP then, Equation 8 is fulfilled and, on 
considering Equation 7, it results 

f~oo D(u, z) g(x - u) du 

= f~-oo D(u, z + Az) g(x + Ax - u) du (17) 

Moreover, on making the change of variable 
u' = u - Ax, Equation 16 leads to 

du 

I~176 D ( #  + Ax, z + Az) g(x - u') du' (18) 

and rearranging Equation 18 gives 

f~-oo"[D(u + Ax, z + Az) - D(u, z)] g(x - u) du = 0 

(19) 

Due to the definition of  the distribution function, the 
result given by Equation 19 does not depend on the 
mechanical property considered since it is valid for 
different g functions. 

As shown in the Appendix, Equation 19 means that 
the expression included in the brackets must be zero 
or, which is equivalent, 

D(u + Ax, z + Az) = D(u,z )  (20) 

leading to the conclusion that the distribution func- 
tion also satisfies the TTSP, with the same horizontal 
translation path as the one applied to the curves F 
against x, for the same increment Az. 

4037 



1 
�9 ---" Mo 
N 

1 I 
c A I' 2A-  

(o) 

( 

/ 

%% 

I I 
Um U m 

%%%%% 
~ %%%%%%%% 

(c) 

0 

Figure 1 (a) box, (b) lognormal, (c) wedge and (d) ramp distribution functions. 
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3. A p p l i c a t i o n s  
If the spectra measured at different temperatures sat- 
isfy the TTSP this means that the corresponding set o f  
curves are related by a translation path parallel to the 
abscissa. Consequently, as pointed out in Section 2.1, 
the function D, the abscissa u and the parameter z are 
related, according to Equation 9, by the implicit func- 
tion 

G(D,  u -  ~ 'h(z) )  --- 0; 4' = a u / A h ( z )  (21) 

An analysis of this equation can only be performed if 
the spectrum is expressed as an analytical function. 
The distribution functions for real polymer systems, 
however, are complex and the functional dependence 
o lD  on the characteristic time is not generally known. 
Nevertheless, Tobolsky and other investigators [15, 
16] suggested that the real spectrum can be thought to 
arise from simpler distributions of relaxation or retar- 
dation times. The spectra most commonly used are the 
box [16, 17], the lognormal [18], the wedge [16, 19] and 
the ramp [20] distribution functions. All these cases 
will be considered in detail to show that the time- 
temperature superposition imposes some restrictions 
on the parameters of the distribution. The box distri- 
bmion, shown schematically by curve (a) of Fig. 1, will 
be considered in the first place. This distribution is 
described by 

In D(u,  z) = A(z ) {  Y [u - Urn(Z) 4- A(z)] 

-- Y [u -- Um(Z) -- A(z)]} (22) 

where u,.(z) is the mean characteristic time of the 
distribution, A(z) is the half-width of the distribution 
and Y is the unitary step function defined by 

0 forw < 0 
Y(w) = (23) 

1 forw > 0 

4038 

Rearranging Equation 23, it follows 

In D(u,  z) + A(z )  {Y[u - Urn(Z) -- A(z)] 

Y [u - u~(z) + a(z)]} = 0 (24) 

This expression is of the form of Equation 21 if and 
only if 

A(z )  = A = constant (25) 

A(z) = A = constant (26) 

h(z) = Um(Z) (27) 

{' = 1 (28) 

Furthermore, on taking into account Equation 10, it 
follows that 

Au,,(z) = Ax = Au (29) 

Consequently, the box spectrum measured at different 
temperatures does not change its form but only tran- 
slates horizontally with a shift Au that is a function of 
Az. 

The second example is provided by the lognormal 
distribution, shown schematically by curve (b) of Fig, 1, 
which is expressed by 

A(z) ( u - u,.(z) 

where urn(z) is the mean characteristic time of the 
distribution, A ( z ) / f l ( z ) ~  is the maximum of the spec- 
trum and fl(z) is the half-width of the spectrum at 
D(u, z) = A(z)]fl(z)x/-~ e. Rearranging Equation 30, as 
for the case of the box distribution, Equation 21 is 
satisfied if and only if 

A(z )  = A = constant (31) 

fl(z) -=- fl = constant (32) 
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Figure 2 Schematic representation of the conditions imposed by the TTSP on the wedge spectrum. 

showing that the lognormal spectrum does not change 
its shape when it is measured at different tempera- 
tures. Furthermore, 4' = 1 and h(z) = Urn(Z) just as 
for the box distribution function, pointing out the 
analogy between these two spectra. 

The third example corresponds to the wedge spec- 
trum, represented schematically by curve (c) of  Fig. l, 
and described by the following expression 

In D(u, z) = [M0(z) + a(z)u] { Y(u - ul(z)) 

- Y ( u  - u ,  - A(z))} (33) 

where a(z) is the slope of  the wedge that begins at u~(z) 
and ends at u~ + A(z), that is, A(z) is the width of the 
spectrum. Mo(z) is the value of D(u, z) for u = 0. 
Now, Equation 33 can be written in the implicit form 
given by Equation 21 if and only if 

and 

a(z) = a = constant (34) 

A(z) = A = constant (35) 

Mo(z) = M - au,(z) (36) 

where M is a constant. In this case, according to 
Equation 21, h(z) = uj(z) and d.' = 1. Then, from 
Equation 10 it follows that Au~ = Au and from 
Equation 36, AM0 = - a A u .  Consequently, if two 
spectra that satisfy the TTSP are measured at the 
temperatures z and z + Az and, one of them is wedge 
the other will be also wedge with the same width and 
slope, and, will begin at u~ + Au with an intercept 

Mo(z + Az) = Mo(z) - a A ,  (37) 

These conditions are illustrated schematically in 
Fig. 2. Finally, the ramp distribution function, illus- 
trated schematically by curve (d) of Fig. 1, will be 
considered as a fourth example. This spectrum does 
not require a new analysis since it is only a particular 

case of the wedge function treated above, when 

A(z) = [ -  M0(~)/a] - . , ( z )  (38) 

Then, all the conditions given for the wedge function 
must also be fulfilled in this case and, according to 
Equation 37, it follows that AA = 0, that is, the ramp 
spectrum only translates keeping its shape. 

The Rouse theory will be considered as an applica- 
tion of the ramp distribution function. In fact, it has 
been shown that the discrete characteristic times 
determined by this theory can be expressed in terms of  
a continuous spectrum defined by [8, (Ch. 9)] 

l n D (u , z )  = [ ( C -  alnz) + a u ] { Y ( u -  u~(z) 

- -  Y ( ~ /  - -  u I ( z )  - -  a ) }  (39) 

with 

C = In nk(~ - qs (40) 

where n is the number of molecules per cubic centi- 
meter, k is Boltzmann constant, r/is the viscosity of 
the polymer, r/s is the viscosity of the solvent (for dilute 
solutions), a is the slope of the spectrum, u t = In Tmi, 
and A = in (T,,ax/%i,,) is the width of  the spectrum. 
The minimum, Vm~,, and maximum, z . . . .  characteristic 
times are determined by Rouse theory [8, (Ch. 9)]. 
Moreover, since the spectrum associated to this mol- 
ecular theory satisfies Equation 21, then Equations 34 
to 37 are fulfilled. In fact, the slope, a, is a constant, 
being its value - 0 . 5  for the relaxation spectrum and 
0.5 for the retardation distribution function. More- 
over, from Equations 36 and 39 

Mo(z) = C -  alnz = M -  aul(z) (41) 

Finally, since [9, (p. 189)] 

z,,i~ = 150 (t/ - ~h)/~z2N2nkT (42) 
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where N is the number of monomers in the polymer 
chain, and, on combining Equations 40 to 42 it is easy 
to show that 

nz = nT  = constant = K (43) 

and 

h(z) = in (150/rcZN2Kk) + in (t/ - tt~) (44) 

On taking into account that ~' = 1, Equation 44 leads 
to 

Au = Ah(z) = Aln ( t / -  r/,) (45) 

Furthermore, if (~/ - t/,) depends on temperature 
according to the expression 

~/ - t/, = t/0 exp [H=/k(T - To)] (46) 

where ~/0 is a constant,/-/~ is the activation enthalpy 
when T tends to infinity and To is an empirical con- 
stant, it can be shown that h(z) of  Equation 44 is of the 
form of Equation 11 and Equation 46 can be written 
as [14, 21] 

Au = - c , ( r r ) { ( T -  Tr)/[Ca(Tr) -.b T -  Tr]} 

(47) 

where 

C,(Tr) = H ~ / k ( T r -  T0)2.303 (48) 

C2(Tr) = T r -  To (49) 

Tr is the reference temperature and G ,  C2 are the 
constants of WLF equation. In other words, if the 
spectrum is described by the Rouse theory and the 
increments in u and T, needed to form the spectrum of 
the master curve, are related by WLF equation, then, 
r/ - ~ should depend on temperature according to 
Equation 46. 

It should be pointed out, finally, that the considera- 
tions made in the paper can be applied also if reduced 
variables and spectra are used. 

4. Conclusions 
It has been demonstrated that if the curves that 
describe the time or frequency dependence of the 
mechanical properties at different temperatures obey 
the time-temperature superposition, then, the corre- 
sponding individual distribution functions can also be 
matched to form a master spectrum, and, vice versa. 
The increments in time or frequency at each tempera- 
ture needed to form the master curve, coincide with 
the increments in the corresponding retardation or 
relaxation times needed to form the master spectrum. 
Finally, some applications to typical spectra presented 
in the literature have been given, to show how the 
time-temperature superposition imposes some restric- 
tions on the parameters of the distribution. 
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Appendix 
The normalized viscoelastic functions for a single 
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element (Maxwell or Voigt) can be written as 

gG(x - u) = exp [ - e x p  (x - u)] (A1) 

g~. = e x p [ 3 ( x -  u ) ] / 2 c o s h ( x -  u) (A2) 

gG.(x - u) = l / 2 c o s h ( x  - u) (A3) 

g j ( x -  u) = 1 - e x p [ - e x p ( x -  u)] 

= 1 - gG(X -- U) (A4) 

g s ' ( x -  u) = e x p ( x -  u ) / 2 c o s h ( x -  u) 

= exp [ - 2 ( x  - u)]ga,(x - u) (A5) 

g j . ( x -  u) = 1 / 2 c o s h ( x  - u) = gG,,(x - u) 

(A6) 

where the subscripts indicate the respective visco- 
elastic property. Now, g being one of the functions 
given in Equations A1 to A6, let us consider a func- 
tion, f ,  which does not depend on g, such that 

f~ f (u )g (u )du  = 0 (17) 

The function f must fulfill certain conditions. In fact, 
it is known that any arbitrary function can be expressed 
as a sum of an even function and an odd function, as 
for example 

where 

and 

f e + L  = f  

f~ = [f(u) + f ( -  u)]/2 (A8) 

fo = If(u) -- f ( -  u)l/2 (A9) 

The subscripts o and e indicate odd and even, respect- 
ively. A similar analysis can be made for the function 
g. Then, Equation A7 can be written as 

;~_~ [f~(u)go(U ) + fo(U)ge(U)] du 

t~_~o [f~(u)g,(u) + fo(u)go(U)] du = 0(A10) + 

The integrand of the first term is an odd function so 
that the first integral is zero; consequently, the second 
integral is also zero but, since the integrand is an even 
function the only possibility is the trivial solution, that 
is, 

fe (U)ge (U) "Jc fo (U)go (U) = 0 (A 11) 

which means that f . g  is an odd function. Hence, if 
go = 0, that is, i f g  is an even function, f must be an 
odd function in order to satisfy Equation A7. The 
normalized viscoelastic functions, given by Equations 
A1 to A6, however, do not possess a definite parity, 
which means that go r O. Then, Equation A11 can be 
expressed as 

fo (u) = - [ge (u)/go (u)]f~ (u) (A 12) 

leading to 

f = f e { 1  - -  [ge(u)lgo(U)]} (A13) 

Furthermore, on taking into account Equation A13 
and the definition of g~ and go in terms of g it follows 



that 

f = 2f~/[1 - g(u)/g(-  u)] (A14) 

S ince fdoes  not depend on the viscoelastic functions, 
Equation A14 means that either fe is zero or g(u)/ 
g ( - u )  is the same for all the functions given by 
Equations A1 to A6. The last possibility does not 
apply, as shown by the two examples that follows: On 
considering Equation A5, it is easy to show that 

g j , ( u ) / g j , ( - - U )  = e -2" cosh (x + u)/cosh (x - u) 

(A15) 

and, from Equation A6 

gs,.(u)/gs.(-u) = cosh (x + u)/cos (x - u) 

(A16) 

Consequently, it follows that f~ = 0, which implies, 
according to Equation A14, t h a t f  = 0. All this pro- 
ves Equation 20 of the text. 
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